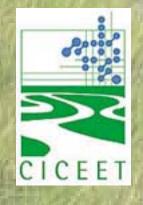

Assessment of Estuarine Trophic Status (ASSETS)

DRAFT Results

Synthesis of SWMP Data for ASSETS Eutrophication Assessment of the North Atlantic Region NERR Systems



CICEET Project: Synthesis of SWMP Data for ASSETS Eutrophication Assessment of the North Atlantic Region NERR Systems

Presentation by Cayce Dalton, On contract with Wells NERR, Wells ME e-mail: cayce@wellsnerr.org phone: 207-646-8645, x103

Principal Investigators: Dr Suzanne Bricker, NOAA NCCOS, Silver Spring MD Dr Michele Dionne, Wells NERR, Wells ME

Additional Project Member: Fred Dillon, FB Environmental, Portland, ME

ASSETS has three parts

Pressure

- Susceptibility
 - Dilution
 - Flushing
- Nutrient inflow from watershed

State

- Symptoms in salinity zones
 - Chl-a
 - macroalgae
 - DO
 - SAV
 - HAB

RARGOM November 2006

Response

- Susceptibility
 - Dilution
 - Flushing
- Future nutrient inflow

ASSETS has three parts

- Influencing Factors
- Pressure
- Susceptibility
 - Dilution
 - Flushing
- Nutrient inflow from watershed

- Overall Eutrophic Condition
 - State
 - Symptoms in salinity zones
 - Chl-a
 - macroalgae
 - DO
 - SAV
 - HAB

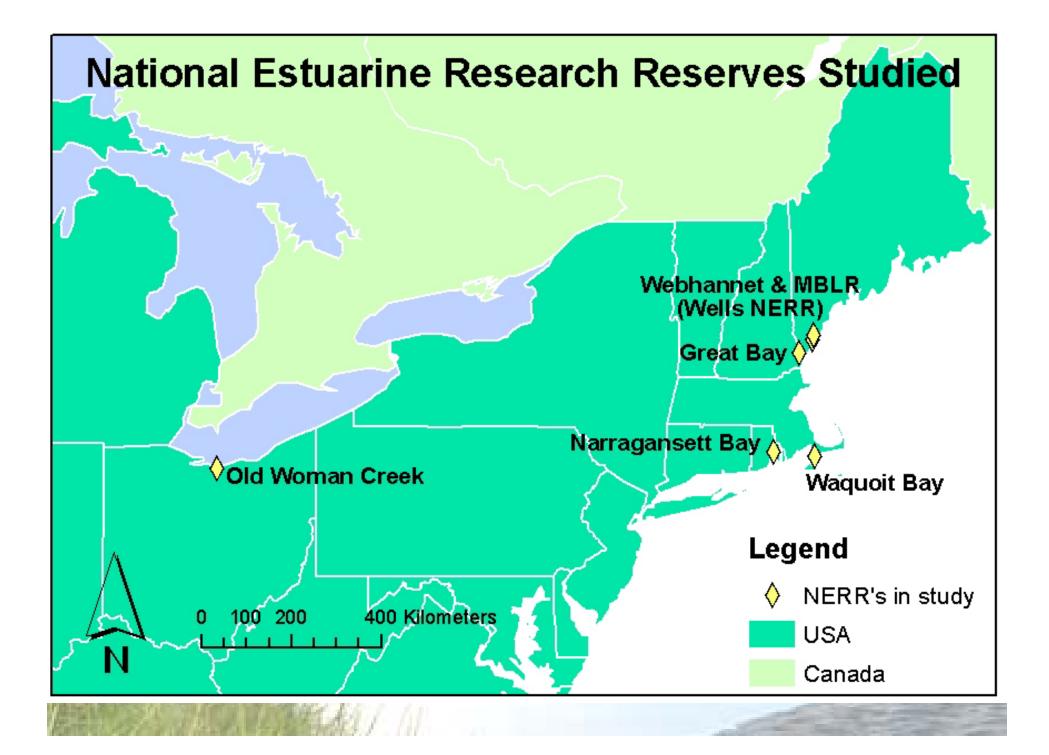
- Future Outlook
- Response
- Susceptibility
 - DilutionFlushing
- Future nutrient inflow

Available online at www.sciencedirect.com

SCIENCE d DIRECT.

Ecological Modelling 169 (2003) 39-60

ECOLOGICAL MODELLING

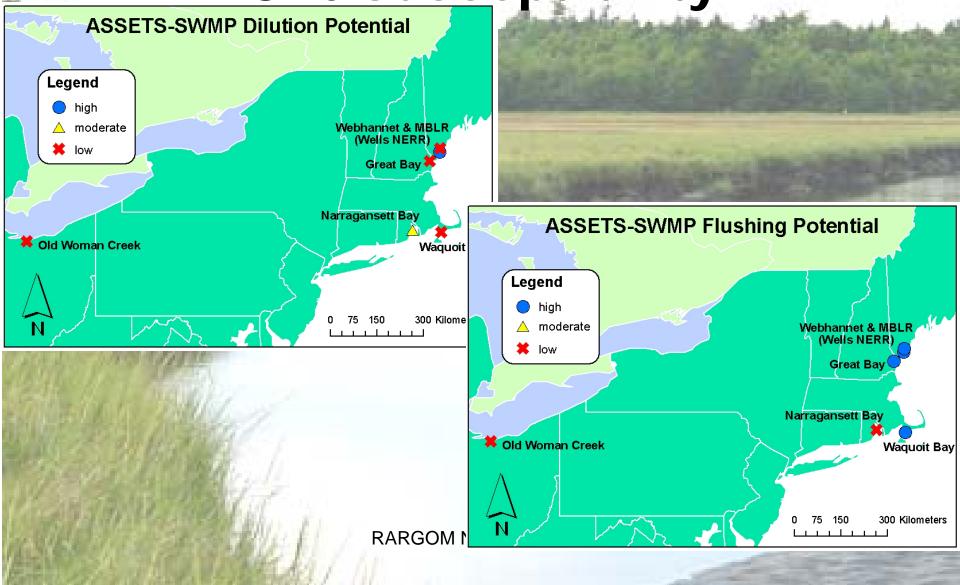

www.elsevier.com/locate/ecolmodel

An integrated methodology for assessment of estuarine trophic status

S.B. Bricker^{a,*}, J.G. Ferreira^b, T. Simas^b

^a NOAA—National Ocean Service, National Centers for Coastal Ocean Science, 1305 East West Highway, Silver Spring, MD 20910, USA ^b IMAR—Institute of Marine Research, Centre for Ecological Modelling, DCEA-FCT, Qta. Torre, 2829-516 Monte de Caparica, Portugal

Received 30 July 2002; received in revised form 16 April 2003; accepted 12 May 2003

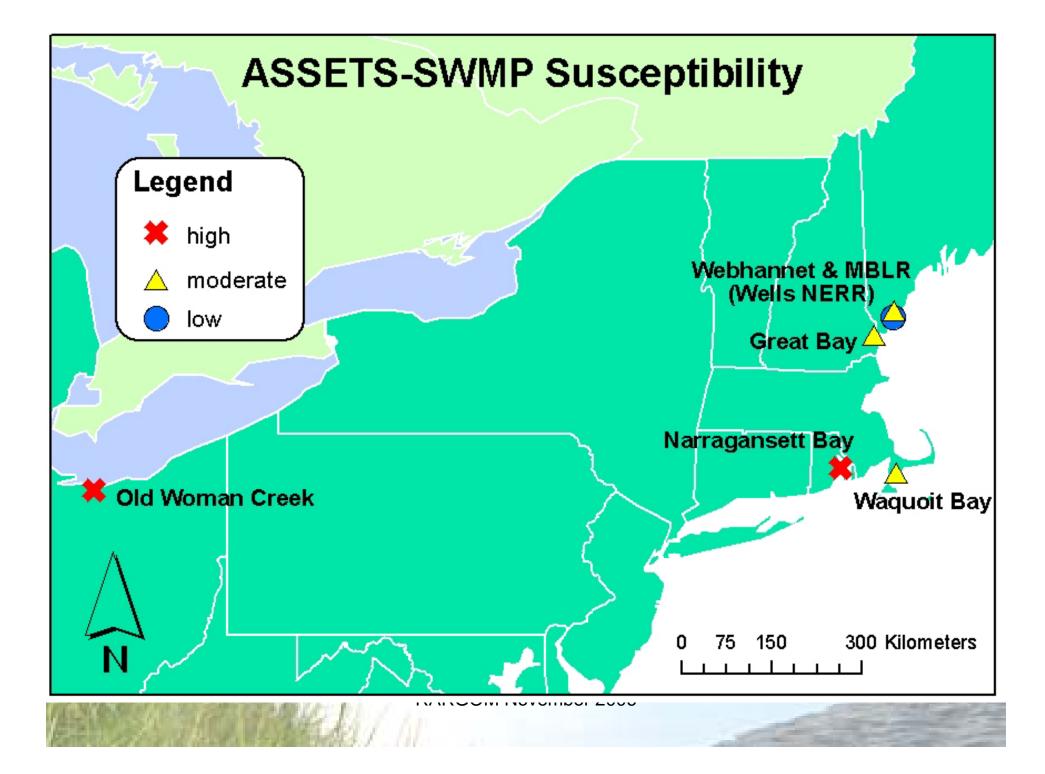

June Workshop

Pressure: Dilution & Flushing Give **Susceptibility**

Pressure: Dilution

Dilution potential:

Considers only estuary volume, not amount of FW inflow.


FW inflow

Estuary

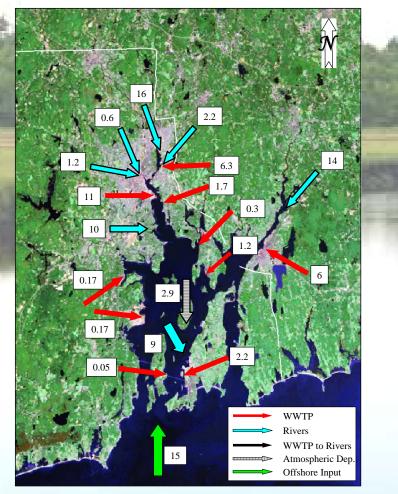
Dilution Potential Table

1. Decision Rules for DILUTION Potential. This analysis assumes that a larger portion of the water column is potentially available to dilute nutrient loads in a vertically homogenous estuary than in a vertically stratified system. The assumption is that for stratified systems, nutrients are most often retained in the upper portion (freshwater fraction) of the water column. In contrast, downward transport (more complete mixing) is likely in vertically homogenous systems. Type B estuaries are generally vertically homogenous, although stratification is observed (confined) in narrow navigation channels or the extreme upper reaches of an estuary. In this case, nutrients are assumed to be diluted throughout the entire water column.

Туре	IF: Vertical Stratification	THEN: Dilution Volume	IF: Dilution Value	Dilution Potential	Number of Estuaries
А	Vertically Homogenous •all year •throughout estuary	1 / VOLestuary	10-13 10-12	HIGH	30
в	Minor Vertical Stratification •navigation channels •upper estuary	1 / VOL _{estuary}	10-11	MODERATE	63
С	Vertically Stratified •most of year •most of estuary	1 / VOL _{fwf} (fwf = freshwater fraction)	10-10 10-09	LOW	45

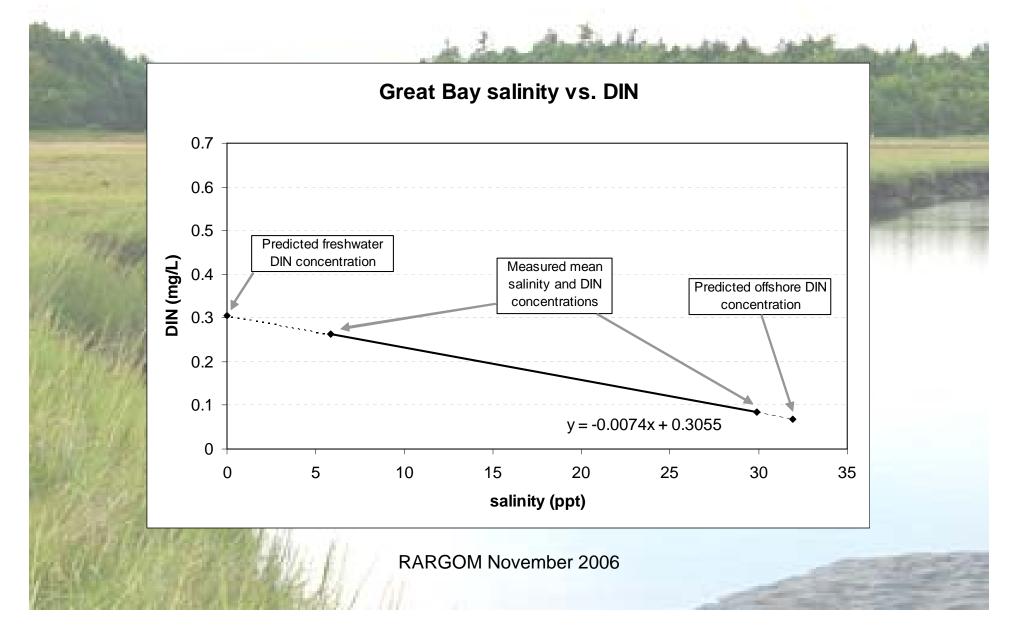
Pressure: Influencing Factors Formula Measures nutrient pressure:

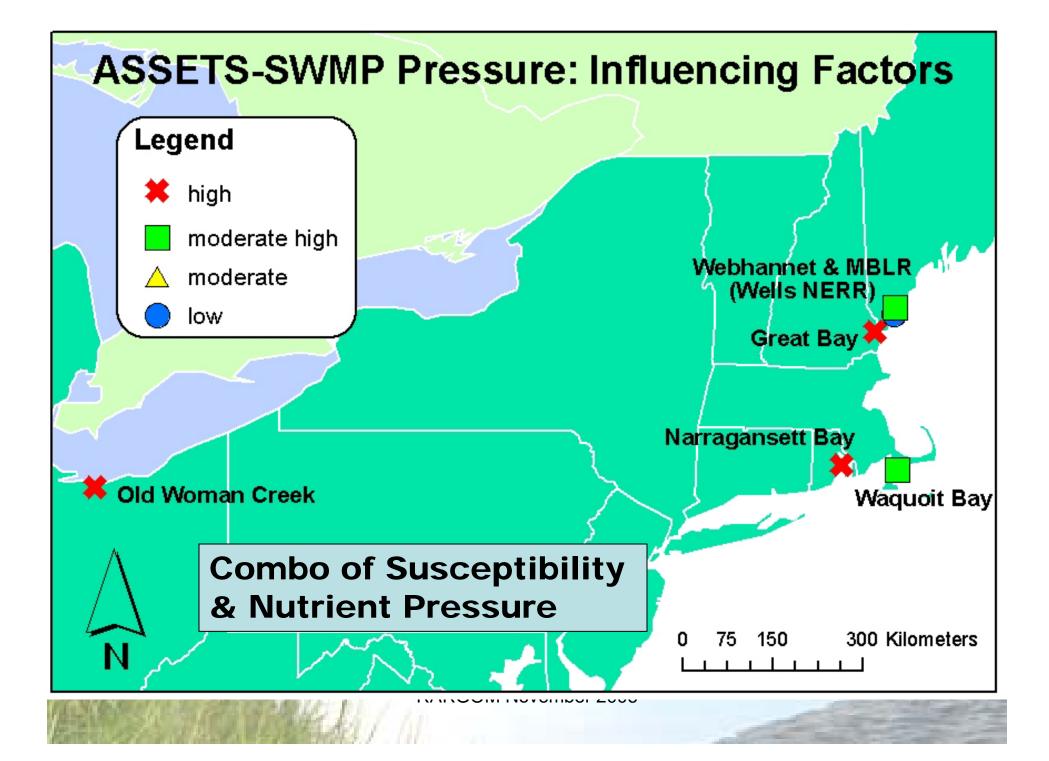
Considers a ratio...


DIN from watershed to Total expected DIN from offshore & watershed

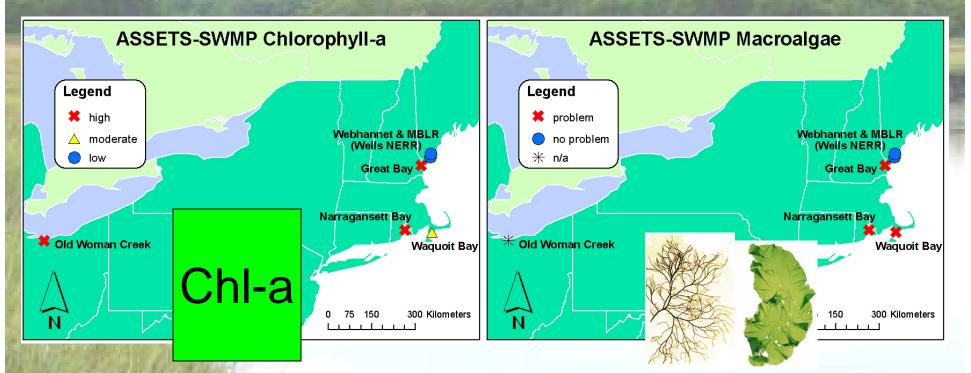
Pressure: Influencing Factors Formula

IF Formula results


MBLR: moderate
Webhannet: moderate
Great Bay: moderate high
Waquoit: moderate
Narragansett: high


Ratio of... DIN from watershed to Total DIN offshore + watershed

From Scott Nixon's Keynote Presentation to Narragansett Bay Symposium, 2004


Estimating DIN End Members

State: Overall Eutrophic Condition

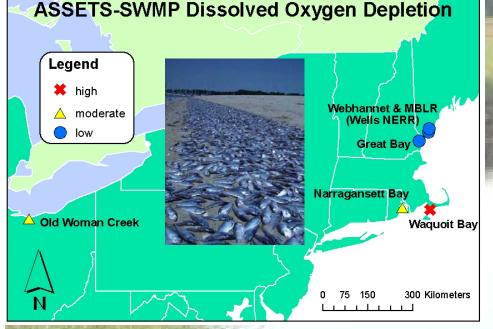
Primary symptoms are Chl-a & macroalgae:

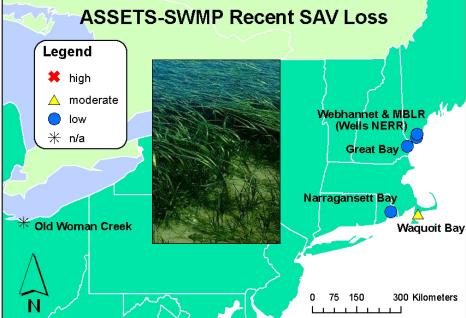
Both show worsening trends as you go south.

Other Results of this Study

RAF

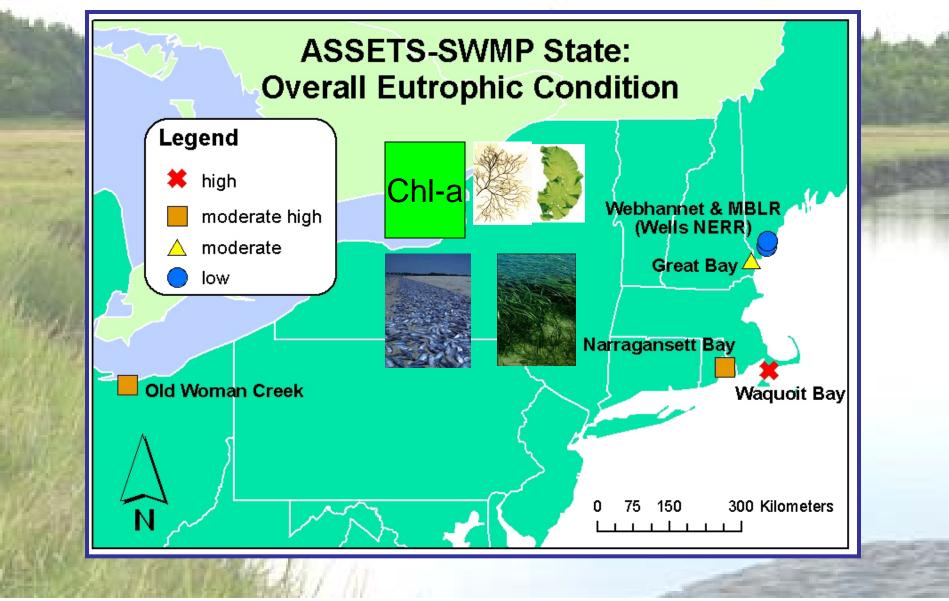
Created salinity zones for MBLR.





State: Overall Eutrophic Condition

Secondary symptoms are DO, SAV loss & HAB's:

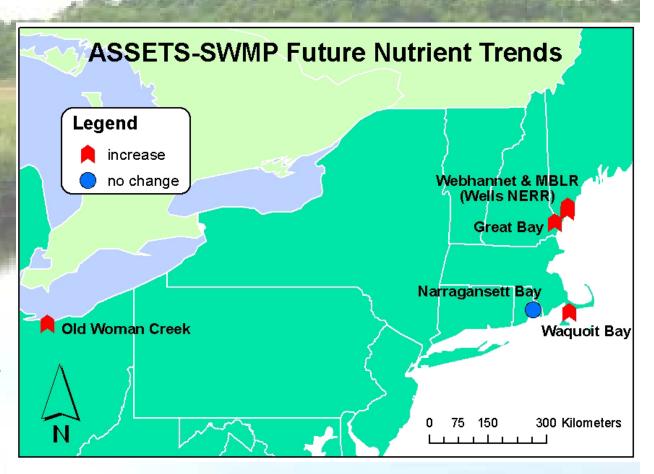

(HAB's no problem at any estuary)

Narragansett, Waquoit, OWC show secondary symptoms

State: Overall Eutrophic Condition

Response: Future Outlook

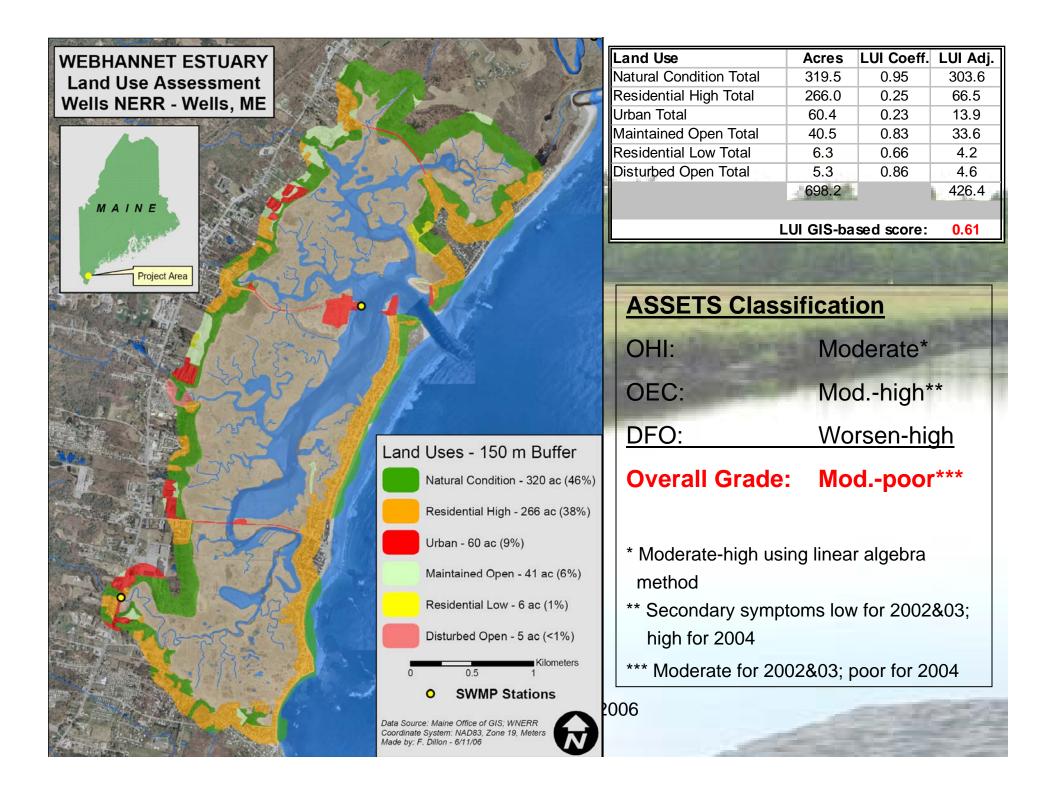
Mirrors pressure, except estimates future nutrient loading in place of current loading.


- Future Outlook is a combination of
- Susceptibility
- Future nutrient trends

Response: Future Outlook

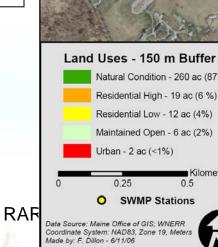
Most nutrient trends rising due to higher population and development.

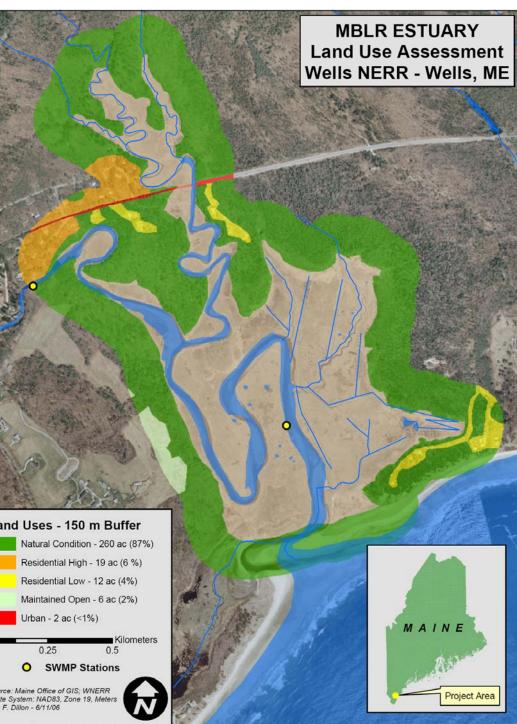
Narragansett Bay is exception, better wastewater treatment appears to keep nutrient trends flat.



2005 Rapid Assessment Method for N.E. Salt Marshes

Characterizes study site in terms of geomorphology, types and degree of stressors and disturbances, and the relative integrity of selected biotic and abiotic salt marsh components.


Incorporates indicators derived from mapping and remote sensing techniques and indicators that are completed through field-based observations and measurements.



Land Use	Acres	LUI Coeff	LUI Adj.
Natural Condition Total	260.1	0.95	247.1
Residential High Total	18.5	0.25	4.6
Residential Low Total	11.5	0.66	7.6
Maintained Open Total	5.9	0.83	4.9
Urban Total	2.2	0.23	0.5
	298.2		264.7
L	UI GIS-bas	sed Score:	0.89

Overall Grade: Good

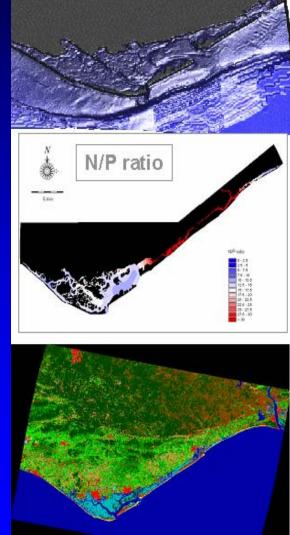
Assessment of Estuarine Trophic Status (ASSETS): evaluation of eutrophication impacts

C. Dalton, S. Bricker, F. Dillon and M. Dionne

ASSETS-SWMP DATA SYNTHESIS WORKSHOP

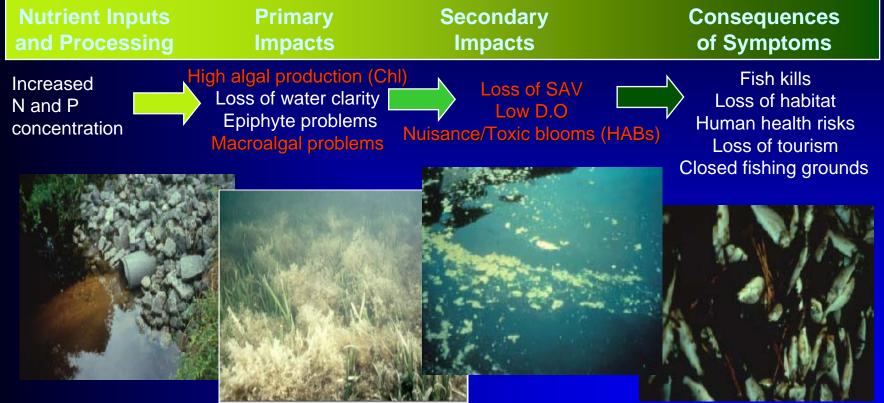
June 12-13, 2006 Wells National Estuarine Research Reserve, Wells, Maine A CICEET funded research project

http://www.eutro.org http://www.eutro.us



The Context and Guiding Legislation

 US Clean Water Act of 1972, US Harmful Algal Bloom and Hypoxia Research and Control Act of 1998


- EU Water Framework Directive (2000/60/EC), EU UWWTD and Nitrates Directives – Definition of Sensitive Areas and Vulnerable Zones
- Eutrophication is a significant problem worldwide (US, EU, Baltic, Mediterranean, Japan, Australia and elsewhere)

http://www.eutro.org http://www.eutro.us

The Problem – The Assessment Approach

Symptoms and Consequences of Nutrient Enrichment

ASSETS: Pressure - State - Response

P: Influencing Factors – Natural processing + Human Nutrient Load S: Overall Eutrophic Condition – Condition of waterbody R: Future Outlook – What will happen in the future?

http://www.eutro.org

http://www.eutro.us

Key Aspects of the ASSETS approach

The NEEA approach may be divided into three parts:

✓ Division of estuaries into

 homogeneous areas
 Evaluation of data completeness and reliability
 Application of indices Tidal freshwater (<0.5 psu)
 Mixing zone (0.5-25 psu)
 Seawater zone (>25 psu)

Spatial and temporal quality of datasets (completeness) Confidence in results (sampling and analytical reliability)

Overall Eutrophic Condition index Influence Factors index Future Outlook index ASSETS combined rating ----- State ----- Pressure ---- (Response) ---- Overall

Indicators and Criteria

Susceptibility: Flushing (tide ht, FW inflow/Est volume) Dilution (Stratification, Dilution volume)

Nutrient Inputs:

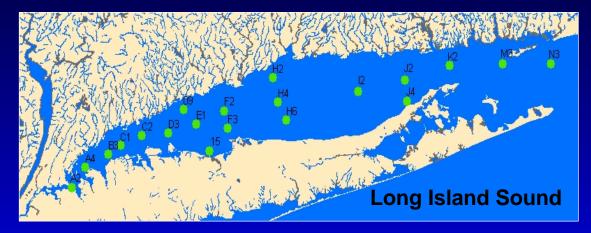
from watershed, and ocean (ratio watershed/ oceanic)

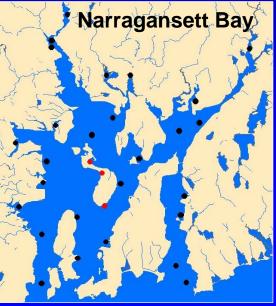
Waterbody Condition:

Primary symptoms

- chlorophyll a (90th percentile, spatial, frequency occurrence)
- macroalgae (detrimental impact to biology)

Secondary symptoms


- dissolved oxygen (10th percentile, spatial, frequency, occurrence)
- HAB occurrence (nuisance or toxic; duration, frequency occurrence)
- seagrass spatial distribution (change)


Data Sources and Issues

Who? **State / Federal Agencies** Universities **Non-Profit Organizations Citizen Groups** (400+ participants in NEEA)

What? Long-term monitoring studies Several year academic projects One time sampling efforts

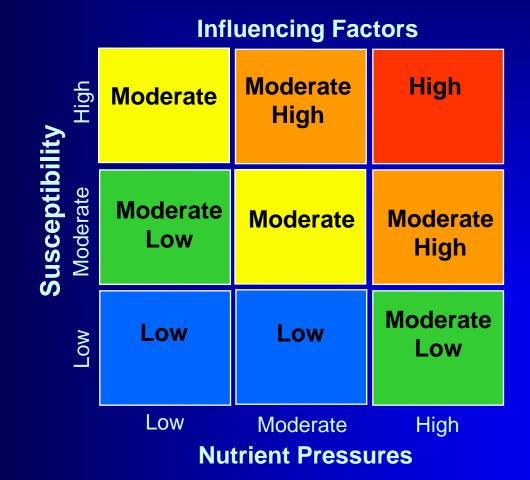
How? Survey questionnaire Web accessible database Literature search Site visit

Long Island Sound

Long Island Sound Study Since 1991 Monthly samples 20 stations

Narragansett Bay

NOAA NERR EPA EMAP DO since 1996 Chl a since 2001 Daily (DO) Monthly (Chl a) 3 stations


Since 2000

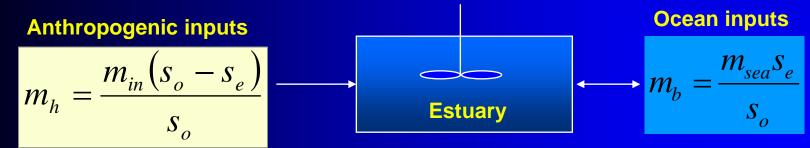
Index pd sample Index pd sample 27 stations

Pressure: Influencing Factors

dilution & flushing

Susceptibility + Nutrient Inputs = Influencing Factors land based or oceanic

Pressure: Influencing Factors


□ m_h, expected nutrient concentration from land based sources (i.e. no ocean sources);

m_b, expected background nutrient concentration from ocean (i.e. no landbased sources);

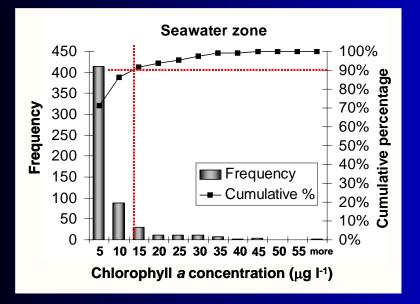
$$\square IF = ratio of m_h/(m_h+m_b);$$

Class	Thresholds
Low Moderate low	0 to <0.2 0.2 to <0.4
Moderate	0.4 to < 0.6
Moderate high	0.6 to < 0.8
High	>0.8

Equations are based on a simple Vollenweider approach, modified to account for dispersive exchange:

Bricker, S.B., Ferreira, J.G. & Simas, T. 2003. An Integrated Methodology for Assessment of Estuarine Trophic Status. Ecological Modelling. 169:39-60.

State: Overall Eutrophic Condition


NEEA Methodology

- Determine Chl a, macroalgae, D.O., SAV loss and HABs condition for each zone (conc/observance, spatial coverage, frequency of occurrence)
- 2) Determine expression for primary (average symptom values) and secondary (highest symptom value)
- 3) Combine primary and secondary for estuary condition

$$S_l = \sum_{1}^{n} \left(\frac{A_z}{A_e} E_l \right)$$

Where:

 A_z : Surface area of zone A_e : Total estuarine surface area E_1 : Expression value at each zone n: Number of estuarine zones

- Level of expression is based on data, cumulative frequency (Chl a = 90th percentile; DO = 10th percentile)
- GIS or GRID: Spatial area determined by GIS or Grid

Chla and Dissolved Oxygen

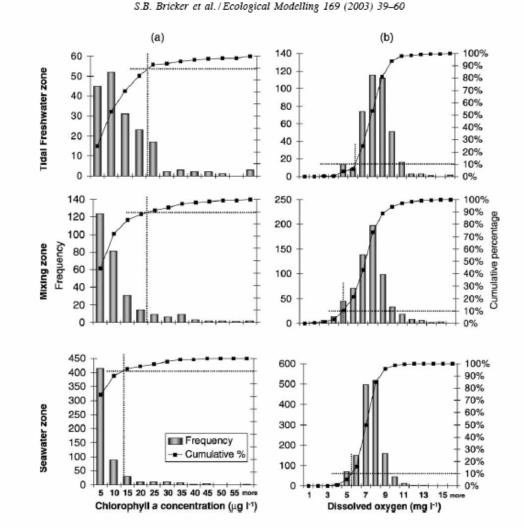
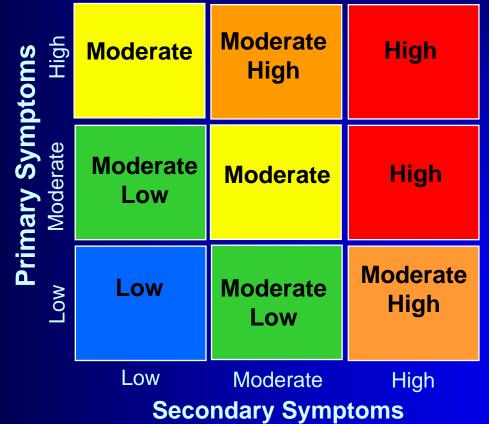


Fig. 9. (a) Percentile 90 for chlorophyll a values and (b) percentile 10 for the dissolved oxygen values, in the three salinity zones of the Tagus estuary.

55


Decision/Logic Example for Chl a

IF	AND	AND	THE	N
Concentration	Spatial Coverage	<u>Frequency</u>	Expression	<u>Value</u>
	High	Periodic	High	1
Lhuparautraphia	Moderate	Periodic	High	1
Hypereutrophic	Low	Periodic	Moderate	0.5
Or	Very Low	Periodic	Moderate	0.5
High	High	Episodic	High	1
	Moderate	Episodic	Moderate	0.5
	Low/Very Low	Episodic	Low	0.25
	Any Spatial Coverage	Unknown	Flag A	0.5
	Unknown	Any Frequency	Flag A	0.5

Flags are used to identify impacts for which not enough data was avaialbe for the components. In these cases, assumptions were made based on conservative estimates that unknown spatial coverage is at least 10 percent of the zone, unknown duration is at least days, and unknown freqency is at least episodic.

State: Overall Eutrophic Condition

Overall Eutrophic Condition

Response: Future Outlook

Future outlook is based on susceptibility and projected changes in nutrient pressures:

Future Outlook For Eutrophic Conditions

ility	Improve	No	Worsen
Low	High	Change	Low
Susceptibility	Improve	No	Worsen
Moderate	Low	Change	High
High	Improve	No	Worsen
	Low	Change	High
	Decrease Future	No Change Nutrient Pre	Increase

<u>Susceptibility</u> is the capacity of a system to dilute or flush nutrients

Nutrient pressure

changes are based on expected population changes, future treatment and remediation plans and changes in watershed use (particularly agricultural)

Influencing Factors

Region н (No. systems)	uman Influence (M – H)	>50% NPS	Primary NPS from Ag*
No. Atlantic (18)	33	78	0
Mid Atlantic (22)	100	91	60
So. Atlantic (22)	81	100	81
Gulf of Mexico (38)	95	100	85
Pacific (39)	82	89	<u>50</u>
US Total (139)	68	92	56
Portugal (10)	30	89	67
China (4)	75	?	?

as percentage of systems US from SPARROW model estimates, PT from Ferreira et al 2003 *for US: >30% though most are >70% from ag, for PT: ag is most significant nonpt source

Assets Score

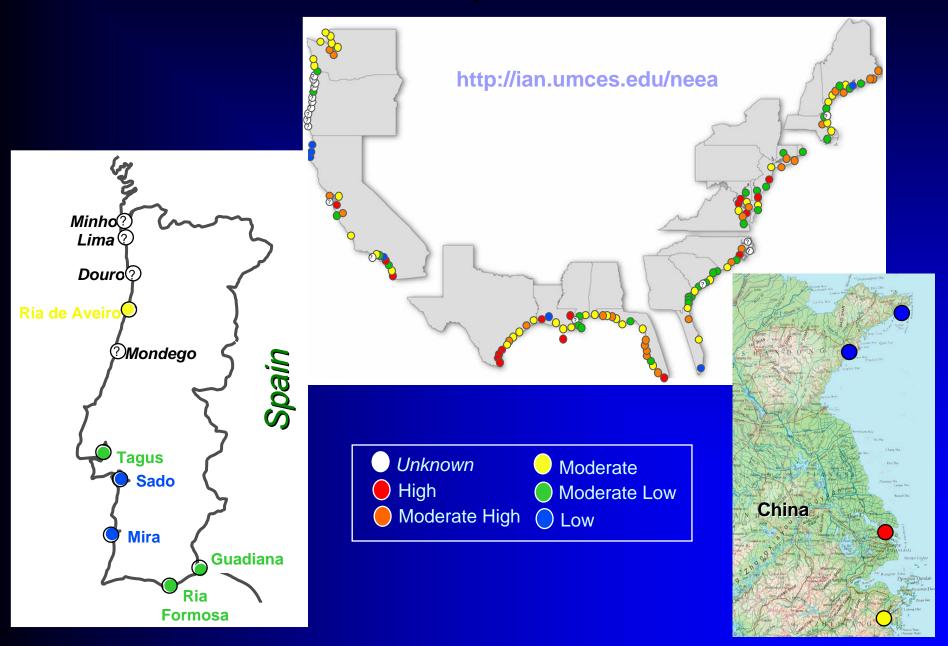

of

Table 6

Grade		5	5				4	ŀ					3	3					2	2				1				
Pressure (OH	H) Low				Moderate low					Moderate						Moderate high					h		High					
<u>S</u> tate (OEC)		Low			Moderate low					Moderate						Moderate high					h		High					
<u>R</u> esponse Imp		Impr	ove	•	I	mp	ro\	/e l	ow		ſ	٩V	ch	an	ge	:	,	Wo	rse	n I	ow		Wor	sen h	igh			
(DFO)		hig	gh																									
Metric						С	on	nbir	nat	ion	m	atr	ix										(Class				
Р							ę	55	5	4	4 4	۱												High				
S							ę	55	5	5 :	58	5												(5%)				
R							ŧ	54	3	5	4 3	3																
Р			5	5	55	5	5 5	54	4	4	4 4	1 3	3	3	3	3	3						(Good				
s			5	5	44	4	4 4	1 5	5	4	4 4	4 5	5	5	4	4	4							19%)				
R			2	1	54	3	2 1	1 2	1	5	4 3	3 5	4	3	5	4	3						(10 /0)				
Р	555	55	44	4	44	4	4 3	33	3	3 :	33	33	2	2	2	2	1 22	2 2	2	2 1	11		Mc	dera	te			
	333	33	44	3	33	3	3 5	55	4	4 :	33	33	4	4	4	4	43	3 3	3	23	33			dora				
_	215	43	2 1	5	43	2	1 2	2 1	2	1 :	5 4	+ 3	5	4	3	2	15	54	3	5 5	54		(32%)				
P		4 4	4	44	3	33	3	3	33	3 2	2	2	2	2 3	2 1	1	1	1 1				I		Poor				
s		2 2	2	22																								
R		54																					(24%)				
Р		I	2	3	2 2	2		, ₂	2	2		. 1	1	1	1	1	1		I					Bad				
s				1																								
R				4 :																			(19%)				

* Note that the NEEA classification has been changed in ASSETS so that the high score now corresponds to high status, rather than a high level of a problem symptom.

Overall Eutrophic Conditions

Future Directions

National and International partnerships to develop:

Type Classification

Improved Assessment Method

Human Use/Socioeconomic Assessment Method

Predictive capability

Tools/Recommendations for Research and Management

Growth of collaborations (natl. & intnatl.)

Periodic update reports (every 2 years? every 5 years?)